TraceableDict Documentation
Release 1.0

Shahar Azulay, Rinat Ishak

Oct 17,2018

Overview

9

General Concept

The Solution

Memory Performance

RunTime Performance

Creating the traceable dict for the first time

Updating a single key inside the dictionary

Updating the entire dictionary while tracing the changes
Reverting un-committed changes to a dictionary

Checkout previous revisions of the dictionary

10 Displaying the commit logs over the different revisions

11 Show changes between revisions, or latest revision and working tree

12 Removing the oldest revision of the traceable dict

11

13

15

17

19

21

23

25

TraceableDict Documentation, Release 1.0

Traceable Python dictionary, that stores change history in an efficient way inside the object.

Shahar Azulay, Rinat Ishak

E Read the Docs

Usage Examples:

Create a traceable dictionary

>>>
>>> dl =
>>> D1 =
>>> D1
{'old_key': 'old_value',
>>> Dl.revisions

[]

{'old_key': 'old_value'}
TraceableDict (dl)

' __trace__':

{1,

from traceable_dict import TraceableDict

' __revisions_ ': []}

Commit the dictionary for the first time

>>> D1.has_uncommitted_changes
True

>>>

>>> D1.commit (revision=1)
>>> D1

{'old_key': 'old_value',
>>> Dl.revisions

[1]

>>> D1.has_uncommitted_changes
False

{1,

' __trace_ ':

'__revisions__ ': [1]}

Update the dictionary while tracing the changes

>>> D1 ['new_key'] =
>>> Dl.trace
{'"_uncommitted_': [(('_root_"',
>>> D1.has_uncommitted_changes
True

>>> D]l.commit (revision=2)

>>> Dl.trace

{'"2": [(('_root_', 'new_key'),
>>> D1.has_uncommitted_changes

'new_value'

None, '

'new_key'),

—a_")1}

None, '__a_ ")1}

(continues on next page)

Overview

https://travis-ci.org/shaharazulay/traceable-dict
https://codecov.io/gh/shaharazulay/traceable-dict
https://github.com/shaharazulay/traceable-dict/blob/master/LICENSE
https://traceable-dict.readthedocs.io/en/latest/

TraceableDict Documentation, Release 1.0

(continued from previous page)

False

>>> Dl.revisions
[1, 2]

Checkout previous revisions

>>> Dl.as_dict ()

{'old_key': 'old_value', 'new_key': 'new_value'}
>>>

>>> D_original = Dl.checkout (revision=1)

>>> D_original.as_dict ()

{'old_key': 'old_value'}

Overview

CHAPTER 1

General Concept

Often a Python dictionary object is used to represent a pre-known structured data that captures some state of a system.
A non-relational database such as DB is a great example of such use-case, where the BSON-based documents can
easily be loaded into a Python dictionary. Those dict-like documents help store complex information, whose structure
may change over time, and are highly common in the industry.

In cases where the dictionary or JSON-like structure represents a meaningful state of a system, tracing it changes may
be a highly valueble part in the monitoring of the system.

This module implements a traceable Python dictionary, that stores change history in an efficient way inside the object.
It allows the user to:

1. Trace reverions of the dictionary’s content and structure.
Roll the dictionary back to previously stored values.
Trace the changes between its different revisions.
Revert unwanted changes made.

Provide a meaningful id to the revisions - such as a timestamp, or verison number.

A

More. ...

TraceableDict Documentation, Release 1.0

Source: A S Source: B 5 Folding JSON Diff
w [v [v [
1, 1, 1,
nal, "freorwd nul,
v { "oneand two ", v +
"info" : " two or three or four " v { Yinfo' - twe-or three orfour"
} "info" : " three and four and five -
1 " "oneandtwo",
} v {
1 "info" : " three and four and five
}
]

[1] tracing the changes in a JSON-like object

4 Chapter 1. General Concept

CHAPTER 2

The Solution

There are many possible solutions to trace the changes in a dict-like object. The major differences between them is
the way in which the trace history is stored.

The three main possibilities go back to:
1. In-Object solution - where the trace is embedded into the dict-like object itself.
2. Out-Of-Object solution - where the trace is stored using some additional attribute of the dict-like object.

3. Trace by Multiple Objects solution - where the trace is stored by storing multiple copies of the dict-like object,
usually equal to the number of known reivisions.

The use of the Out-Of-Object method is not relevant in cases where the object needs to go through serializaion, such
as in cases where the object needs to be stored on disk, in a database or in any other non-Python native and consistent
form. Therefore, we chose to not address this solution as viable.

We chose to focus our solution to work well for non-relational DBs, which store document JSON-like documents
natively. The Trace by Multiple Objects solution would force the creation of multiple documents in the DB, possibly
resulting in a high memory overhead, if objects are kept in full.

However, such solution would provide quick access time for the latest revision of the document. A possible upgrade
of this solution would be to store diffs between document revisions only, but that would possiblt result in a slower
accesss time of the latest version.

TraceableDict Documentation, Release 1.0

{
{ "keyl': 'updated valuel',
:keyl:: :valuel:, 'key2': 'value2',
key2': 'value2 "new_key3': 'value3d',
(' _revisiens_ ': [1, 2, 3],
'keyl': 'updated valuel', ' trace ': {
key (T '3':[(('_root_', 'new_key3'), None, '_key added '}],
'keyl': 'updated valuel', - 2': [(('_root_', 'keyl'), 'valuel', '_ key_ updated_ ')]
‘key2': 'valuel' }
"new_key3': 'value3'
} J
TRACE BY MULTIPLE OBJECTS IN-OBIECT TRACE

[1] In-Objecr and Multiple Objects methods for tracing the changes in a JSON-like object

We chose to store the trace In-Object. While this method is limited by the max allowed size of the document, and may
not be suitable for very large documents, we found it to be the most elegant solution.

The trace is stored as part of the dict-like structure of the document allowing quick access to the latest revision, while
storing only diffs between revision which results in lower memory costs.

6 Chapter 2. The Solution

CHAPTER 3

Memory Performance

The In-Object trace solution we chose results stores the latest version of the dictionary, and with it two meta-fields that
describe the history of the dict-like object:

1. trace - capturing diffs between different revisions of the dict over the different revisions.
2. revision - capturing the ids of the different revision in which the dict changes.

The space performance is therefore effected directly and linearly by the dict average size, and by the number of
revisions, per-key in the dict.

In order to support real world memory restrictions, such as MongoDb maximum document size (16MB), the Trace-
ableDict also support a limited “memory” if needed and can drop old revisions, allowing it to store the latest k-revision
only in a cyclic manner.

TraceableDict Documentation, Release 1.0

8 Chapter 3. Memory Performance

CHAPTER 4

RunTime Performance

Here are the general asymptotic bounds of expected runtime performance:

1.

e

as_dict - Access to the latest dict revision is done in O(Kk), where k is the number of k

. commit - Assigning a meaningful revision id to all uncommited changes is done in O(1).

2
3.
4

revert - Reverting all uncommited changes is done in O(1).

. checkout - Rolling back to an old revision is done in O(m + n) where m is the number of revisions between the

working tree and the desired revision, and n is the number of per-key diffs performed between the two revisions.
remove_oldest_revision - Removing the oldest revision is done in O(1).
log - Displaying commit logs shows similar performance to checkout method.

diff - Showing changes between revisions shows similar performance to checkout method.

TraceableDict Documentation, Release 1.0

10 Chapter 4. RunTime Performance

CHAPTER B

Creating the traceable dict for the first time

>>> from traceable_dict import TraceableDict
>>>

>>> dl = {'first_key': 'first_value'}

>>>

>>> D1 = TraceableDict (dl)

>>> D1

{'__trace__ ': {}, '__revisions__': [], 'first_key':

>>> Dl.revisions

[]

>>> D1.has_uncommitted_changes
True

>>>

>>> D]l.commit (revision=1)

>>>

>>> D1l.has_uncommitted_changes
False

>>> Dl.revisions

[1]

'first_value'}

11

TraceableDict Documentation, Release 1.0

12 Chapter 5. Creating the traceable dict for the first time

CHAPTER O

Updating a single key inside the dictionary

>>> from traceable_dict import TraceableDict
>>>

>>> dl = {'old_key': 'old_value'}

>>> D1 = TraceableDict (dl)

>>> D1

{'old_key': 'old_value', '__trace__': {}, '__revisions___
>>>

>>> D1.has_uncommitted_changes

True

>>>

>>> Dl.commit (revision=1)

>>> D1

{'old_key': 'old_value', '__trace__': {}, '__revisions___
>>> Dl.revisions

[1]

>>> D1.has_uncommitted_changes

False

>>> D1['new_key'] = 'new_val'

>>> Dl.trace

" 01}

' [11}

{'_uncommitted_"': [(('_root_', 'new_key'), None, '_a__")1}

>>> D1l.has_uncommitted_changes
True

>>> D1.commit (revision=2)

>>> Dl.trace

{'2': [(('_root_', 'new_key'), None, '_a_'")I1}
>>> D1l.has_uncommitted_changes

False

>>> Dl.revisions

[1, 2]

13

TraceableDict Documentation, Release 1.0

14 Chapter 6. Updating a single key inside the dictionary

CHAPTER /

Updating the entire dictionary while tracing the changes

>>> from traceable_dict import TraceableDict

>>>

>>> dl = {'old_key': 'old_value'}

>>> D1 = TraceableDict (dl)

>>> D1

{'old_key': 'old_value', '__trace__': {}, '__revisions__': []}
>>>

>>> D1.commit (revision=1)
>>> Dl.trace

{}

>>> d2
>>>
>>> D1 = D1 | d2
>>> Dl.as_dict ()

{'old_key': 'updated_value', 'new_key': 'new_value'}

{'old_key': 'updated_value', 'new_key': 'new_value'}

>>> Dl.trace

{'_uncommitted_"': [(('_root_', 'old_key'), 'old_value', '_u__"), (('_root_', 'new_key
—"'"), None, '_a_ ")1}

>>>

>>> Dl.commit (revision=2)
>>> Dl.trace

{'2': [(('_root_', 'old key'), 'old value', '_u__ "), (('_root_', 'new_key'), None, '_
—_a__")1}

>>> D1l.has_uncommitted_changes

False

>>> Dl.revisions

[1, 2]

15

TraceableDict Documentation, Release 1.0

16 Chapter 7. Updating the entire dictionary while tracing the changes

CHAPTER 8

Reverting un-committed changes to a dictionary

>>> from traceable_dict import TraceableDict
>>>

>>> dl {'old_key': 'old_value'}

>>> D1 = TraceableDict (dl)

>>> Dl.commit (revision=1)

>>>

>>> D1['new_key'] = 'new_value'

>>> Dl.as_dict ()

{'old_key': 'old_value', 'new_key': 'new_value'}
>>> Dl.trace

{'_uncommitted_"': [(('_root_', 'nmew_key'), None, '_a__")1}
>>>

>>> Dl.revert ()

>>>

>>> D1l.has_uncommitted_changes

False

>>> Dl.as_dict ()

{'old_key': 'old_value'}

17

TraceableDict Documentation, Release 1.0

18 Chapter 8. Reverting un-committed changes to a dictionary

CHAPTER 9

Checkout previous revisions of the dictionary

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

from traceable_dict import TraceableDict

dl {'old_key': 'old_value'}
D1 TraceableDict (dl)
D1.commit (revision=1)

d2 = {'old_key': 'updated_value', 'new_key': 'new_value'}

D1 = D1 | d2
Dl.as_dict ()

{'old_key': 'updated_value', 'new_key': 'new_value'}

>>>
>>>
>>>
[1,
>>>
>>>
>>>

D1.commit (revision=2)
Dl.revisions
2]

D_original = D1l.checkout (revision=1)
D_original.as_dict ()

{'old_key': 'old_value'}

19

TraceableDict Documentation, Release 1.0

20 Chapter 9. Checkout previous revisions of the dictionary

cHAaPTER 10

Displaying the commit logs over the different revisions

>>> from traceable_dict import TraceableDict
>>>

>>> dl {'keyl': 'valuel'}

>>> D1 = TraceableDict (dl)

>>> D1.commit (revision=1)

>>>

>>> D1['keyl'] = 'new_valuel'

>>> Dl.commit (revision=2)

>>>

>>> log = Dl.log(path=('keyl',))
changeset: 1

value: {'keyl': 'valuel'}
changeset: 2

value: {'keyl': 'new_valuel'}
>>> log

{l: {'keyl': 'valuel'}, 2: {'keyl': 'new_valuel'}}

21

TraceableDict Documentation, Release 1.0

22 Chapter 10. Displaying the commit logs over the different revisions

cHAPTER 11

Show changes between revisions, or latest revision and working tree

>>> from traceable_dict import TraceableDict
>>>
>>> dl = {
'keyl': 'valuel',
'key2': 'value2'
}
>>> D1 = TraceableDict (dl)
>>> Dl.commit (revision=1)
>>>
>>> d2 = {
'keyl': 'new_valuel',
'key3': 'value3'
...}
>>>
>>> D1 = D1 | d2
>>> D]l.commit (revision=2)
>>>
>>> diff = Dl1.diff (revision=2)
>>> diff
{'key3': '"+++valueld', 'key2': '-——value2', 'keyl':

'—-—valuel +++new_valuel'}

23

TraceableDict Documentation, Release 1.0

24 Chapter 11. Show changes between revisions, or latest revision and working tree

cHAPTER 12

Removing the oldest revision of the traceable dict

This option allows the user to contol the amount of revisions stored in the traceable-dict object, by trimming the tail
of the trace stored in the traceable-dict. The oldest revision is cleared out and cannot be returned to again.

>>> from traceable_dict import TraceableDict

>>>

>>> dl = {'old_key': 'old_value'}

>>> d2 = {'old_key': 'new_value'}

>>> d3 = {'old_key': 'even_newer_value'}
>>>

>>> D1 = TraceableDict (dl)
>>> D1.commit (revision=1)
>>>

>>> D1 = D1 | d2

>>> Dl.commit (revision=2)
>>>

>>> D1 = D1 | d3

>>> D1.commit (revision=3)
>>>

>>> Dl.revisions

[1, 2, 3]

>>> Dl.remove_oldest_revision ()
>>> D1. revisions

[2, 3]

25

	General Concept
	The Solution
	Memory Performance
	RunTime Performance
	Creating the traceable dict for the first time
	Updating a single key inside the dictionary
	Updating the entire dictionary while tracing the changes
	Reverting un-committed changes to a dictionary
	Checkout previous revisions of the dictionary
	Displaying the commit logs over the different revisions
	Show changes between revisions, or latest revision and working tree
	Removing the oldest revision of the traceable dict

